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Abstract
Numerical calculations of turbulence, as well as theoretical turbulence closure
techniques, often depend upon a spectral decomposition of the flow fields.
Viscous fluid dynamical calculations generally assume no-slip boundary
conditions. However, for incompressible flows, such spectral decompositions
have been limited to two-dimensional situations. Here we present a method
that yields orthogonal decompositions of incompressible, three-dimensional
flow fields and apply it to periodic cylindrical and spherical no-slip boundaries.

PACS numbers: 47.11.Kb, 47.27.Er, 91.25.Cw, 52.72.+v

1. Introduction

The mathematical properties of a linearized and stationary form of the Navier–Stokes equation,
referred to as the Stokes equation, has been well studied (Foias et al 1990, Constantin and Foias
1988). It is ‘inferred’ that this equation possesses a complete set of solutions for the velocity
field that are incompressible; i.e., solenoidal, and also satisfy no-slip boundary conditions
(Foias et al 2001). The no-slip condition requires that all components of the velocity field
vanish at the boundaries.

Orthogonal spectral decomposition calculations based on complete representations have
proved invaluable in studies of fluid turbulence. They are a necessary ingredient of turbulence
closures. Despite some concerns and alternative suggestions (Lamb 1932, Gresho 1991,
Kress and Montgomery 2000, Gallavotti 2002, Sbragaglia and Prosperetti 2006), it is
generally assumed that viscous fluids obey the no-slip boundary condition. To date, spectral
decompositions of viscous turbulence have been applied to only two-dimensional dynamics,
ostensibly because of the absence of known explicit three-dimensional, orthogonal spectral
decompositions satisfying the no-slip condition. Here we shall derive and demonstrate
orthogonal decompositions of arbitrary solenoidal, three-dimensional velocity fields satisfying
this condition for periodic cylindrical and spherical geometries.
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The lion’s share of turbulence research has been focused on incompressible homogeneous
turbulence where periodic boundary conditions can be employed. The spectral decomposition
used for this is generally termed the Craya representation (Craya 1958). For the case of
bounded geometries, such as turbulence within a sphere or within a circular straight cylinder,
the Chandrasekhar–Kendall representation (Chandrasekhar and Kendall 1957) and its variants
can be utilized. These approaches reduce the problem of decomposing the velocity field to that
of finding appropriate scalar potentials with boundary conditions guaranteeing that the normal
components of the fluid velocity vanish at the boundary. (The Craya representation is an
analogue of these that is appropriate for periodic boundary conditions.) These decompositions
have also been applied to calculations of fluid turbulence within a slab (Turner 2000) and
to explorations of magnetohydrodynamic turbulence (Montgomery et al 1978, Turner 1983,
Dalhburg et al 1988).

A progenitor of our method is the development of the scalar Chandrasekhar–Reid functions
(Chandrasekhar and Reid 1957) used by Chandrasekhar and his coworkers to calculate no-slip
fluid dynamics in a variety of situations, such as Couette flow (Chandrasekhar 1961). These
functions have already been assimilated into a two-dimensional, orthogonal, presumably
complete, solenoidal vector basis satisfying no-slip boundary conditions for the study of
turbulent cylindrical flow by Montgomery and his collaborators (Li and Montgomery 1996,
Li et al 1997). Our decompositions allow the application of spectral analyses to three-
dimensional fluid turbulence with no-slip boundary conditions as well as to three-dimensional
magnetohydrodynamic (MHD) turbulence. The latter has application to planetary and stellar
MHD dynamos and may have relevance to the understanding of transport of quantities such
as angular momentum in accretion disks around stars and black holes. Statistical two-point
models having a similar poloidal/toroidal decomposition (Liechtenstein et al 2005) now also
can be adapted to these no-slip cylindrical and spherical geometries.

In section 2, we obtain a three-dimensional basis appropriate for the description of an
incompressible no-slip flow within a periodic cylinder. In section 3, we derive a basis
appropriate for the description of such a flow within a no-slip spherical boundary.

The vector fields in these bases are solenoidal; i.e., divergence-free. Because they
are divergence-free, they are expressible in terms of curls. Furthermore, the divergence-
free property implies that they are functions of only two scalar fields. For each geometry,
we write down two classes of vector fields, each dependent on a scalar function. Requiring
that these vector fields each vanish at the boundary imposes boundary conditions on the scalar
fields. We then consider the inner products of these vector fields. After integrations by parts,
we obtain matrix elements of a Hermitian operator between the different scalar fields. The
off-diagonal elements must vanish for our orthogonal field representation.

Let us represent this Hermitian operator by H0 and the scalar fields by ξi(r). Then∫
d3r v∗

i (r) · vj (r) = ∫
d3r ξ ∗

i (r)H0ξj (r). Note that this is always positive for i = j, except
for the trivial case of a null velocity. We demonstrate here how to find ξi such that∫

d3r ξ ∗
i (r)H0ξj (r) (which equals

∫
d3r ξj (r)H0ξ

∗
i (r) by virtue of the operator’s Hermiticity)

vanishes for i �= j. In our examples, we shall see that we can construct a new Hermitian
operator Hc such that the equation,

(Hc + λkH0) ξk(r) = 0,

with the required boundary conditions on ξk(r), can be solved analytically. The solutions for
bounded domains will yield discrete values of the eigenvalue, λk . By taking the scalar product
of this equation with a second eigenfunction, ξj (r), next interchanging k with j and taking
the complex conjugate, and finally subtracting the results using the Hermitian nature of these
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operators, we obtain∫
d3r[ξ ∗

j (r)(Hc + λkH0)ξk(r) − ξk(r)(Hc + λ∗
jH0)ξ

∗
j (r)]

= (λk − λ∗
j
)

∫
d3r ξ ∗

j (r)H0ξk(r) = 0.

Since the integral on the right is always positive when j = k, the eigenvalues must all be
real. For non-degenerate eigenvalues; i.e., λj �= λk ,∫

d3r ξ ∗
j (r)H0ξk(r) =

∫
d3r v∗

j (r) · vk(r) = 0,

so that the set of the components of the associated velocity fields, vi(r), provide a solenoidal,
orthogonal basis. Because of the Hermitian nature of the operators, we believe the resulting
basis to be complete.

2. Periodic cylindrical geometry

2.1. Introduction

In this section, we develop the spectral decomposition of a solenoidal vector field for describing
an arbitrary flow within an annulus having two no-slip cylindrical boundaries: an inner
boundary at r = r1 and an outer one at r = r2. (The no-slip condition means merely that all
three components of the vector field vanish at the boundaries.) We assume a periodic length
L in the z-direction. The desired solenoidal vector field is then expressible as a sum of two
classes of components, which we shall see are themselves mutually orthogonal

v(r) =
∞∑

m,l=−∞

∑
n

ct,nmlvt,nml(r) +
∞∑

m,l=−∞

∑
n

cp,nmlvp,nml(r),

vt,nml(r) = ∇ × {ψnml(r) exp[i(mθ + klz)]ẑ},
vp,nml(r) = ∇ × ∇ × {�nml(r) exp[i(mθ + klz)]ẑ}.

(1)

where ẑ is the unit vector along the z-direction. The wavenumber satisfies ki = 2π i/L. Each
value of m and l of v is associated with two scalar potentials,∑

n

ct,nmlψnml(r) and
∑

n

cp,nml�nml(r),

as one would expect for a solenoidal vector field. We consider these two components separately.
We determine sets of scalar functions, {ψnml} and {�nml}, such that the associated vectors

are orthogonal; i.e.,
∫
D

v∗
t,nml

(r) · vt,n′m′l′(r) d3r = 0 and
∫
D

v∗
p,nml

(r) · vp,n′m′l′(r) d3r = 0, for
n �= n′,m �= m′, l �= l′ and where the integration domain D is over the annular volume
between r = r1 and r = r2 along one period, L, in z. The asterisk denotes complex conjugation.
These integrals vanish trivially if m �= m′ or l �= l′, so that we assume that both azimuthal and
axial numbers are equal to m and to l, respectively.

2.2. Case 1: ml �= 0

Since vt,nml(r) = [
im
r
ψnml(r)r̂ − dψnml(r)

dr
θ̂
]

exp[i(mθ + klz)], the vanishing of vt,nml at the
boundaries imposes the conditions that both ψnml and ∂ψnml

∂r
vanish at the two boundaries:
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r = r1 and r = r2. Note that we are using the nomenclature r̂ and θ̂ to represent the unit radial
and azimuthal vectors. Our orthogonality condition becomes∫ r2

r1

r dr

[
m2

r2
ψ∗

nml(r)ψn′ml(r) +
dψ∗

nml(r)

dr

dψn′ml(r)

dr

]
= 0

for off-diagonal components; i.e., for n �= n′. An integration by parts using the vanishing of
ψnml at the boundaries allows this orthogonality condition to be expressed as∫ r2

r1

r dr ψ∗
nml(r)∇2

⊥ψn′ml(r) = 0, for n �= n′ (2)

where

∇2
⊥ ≡ 1

r

d

dr

(
r

d

dr

)
− m2

r2
, (3)

represents the Laplacian operator that operates in the plane normal to the axial direction.
A set of scalar solutions {ψjml(r)} satisfying (2) may be found by observing the Hermitian

nature of the operators, ∇2
⊥ and

(∇2
⊥
)2

:∫ r2

r1

r dr ψ∗
nml(r)∇2

⊥ψn′ml(r) =
∫ r2

r1

r dr ψn′ml(r)∇2
⊥ψ∗

nml(r),∫ r2

r1

r dr ψ∗
nml(r)

(∇2
⊥
)2

ψn′ml(r) =
∫ r2

r1

r dr ψn′ml(r)
(∇2

⊥
)2

ψ∗
nml(r).

(4)

The first Hermitian property follows from an integration by parts using the vanishing of
the solutions at the cylindrical boundaries; the second Hermitian property follows from two
successive integrations by parts using both the vanishing of the solutions and of their radial
derivative at the cylindrical boundaries.

A set of ψnml’s that satisfy (2) are the solutions of the fourth-order ordinary differential
equation (∇2

⊥
)2

ψnml(r) + α2
nml∇2

⊥ψnml(r) = ∇2
⊥

[∇2
⊥ψnml(r) + α2

nmlψnml(r)
] = 0 (5)

satisfying the boundary conditions that ψnml and its first derivative vanish at both r = r1 and
r = r2. The discussion in section 1 demonstrates that the eigenvalues,

{
α2

nml

}
, are real and that

the solutions, ψnml(r) and ψn′ml(r), associated with two non-degenerate eigenvalues, α2
nml

and
α2

n′ml
, satisfy (2). The general form of these solution is

ψnml(r) = Jm(αnmlr) + cY,nmlYm(αnmlr) + c+, nmlr
m + c−, nmlr

−m, (6)

where the four constants, cY,nml, c+,nml, c−,nml and αnml are determined using the four boundary
conditions. The functions, Jm and Ym, are the Bessel functions of the first and second kind of
order m.

We next turn to the second class of solutions, those yielding vp,nml(r). Here we wish to
determine a set of scalar functions, {�nml(r)}, such that the associated vectors are orthogonal;
i.e.,

∫
D

v∗
p,nml

(r) · vp,n′m′l′(r) d3r = 0, for n �= n′,m �= m′, l �= l′. Again, this integral vanishes
trivially if m �= m′ or l �= l′, so that we assume that both azimuthal and axial numbers are
equal to m and l, respectively.

Since

vp,nml(r) =
{

ikl

[
d�nml(r)

dr
r̂ +

im

r
�nml(r)θ̂

]
− ∇2

⊥�nml(r)ẑ
}

exp[i(mθ + klz)],

the vanishing of vp,nml(r) at the two boundaries requires that �nml(r), as well as its first two
radial derivatives, d�nml(r)/dr and d2�nml(r)/dr2, vanish there. We thus have six boundary
conditions on �nml(r).
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Our orthogonality condition becomes∫ r2

r1

r dr

{
k2
l

[
d�∗

nml(r)

dr

d�n′ml(r)

dr
+

m2

r2
�∗

nml(r)�n′ml(r)

]
+ ∇2

⊥�∗
nml(r)∇2

⊥�n′ml(r)

}
= 0

for off-diagonal components; i.e., for n �= n′. When we integrate the first term involving
derivatives of � once by parts using the vanishing of � at the boundaries, and the last term
involving derivatives twice by parts using the vanishing of � and its first radial derivative at
the boundaries, we transform this orthogonality condition to∫ r2

r1

r dr �∗
nml(r)∇2∇2

⊥�n′ml(r) = 0 for n �= n′, (7)

where

∇2 = ∇2
⊥ − k2

l

represents the complete Laplacian operator for a state whose azimuthal and axial periodicities
are contained in the exponential dependence: exp[i(mθ + klz)].

A set of scalar solutions {�iml(r)} satisfying (7) may be found by first noting the Hermitian
nature of the operators, ∇2∇2

⊥ and ∇2
(∇2

⊥
)2

:∫ r2

r1

r dr �∗
nml(r)∇2∇2

⊥�n′ml(r) =
∫ r2

r1

r dr �n′ml(r)∇2∇2
⊥�∗

nml(r),∫ r2

r1

r dr �∗
nml(r)∇2 (∇2

⊥
)2

�n′ml(r) =
∫ r2

r1

r dr �n′ml(r)∇2 (∇2
⊥
)2

�∗
nml(r).

(8)

The first Hermitian property follows from two successive integrations by parts using the
vanishing of the solutions and their radial derivates at the cylindrical boundaries; the second
Hermitian property follows from three successive integrations by parts using both the vanishing
of the solutions and of their first and second radial derivatives at the cylindrical boundaries.

A set of �nml’s that satisfy (7) are the solutions of the sixth-order ordinary differential
equation

∇2
(∇2

⊥
)2

�nml(r) + β2
nml∇2∇2

⊥�nml(r) = ∇2∇2
⊥

[∇2
⊥�nml(r) + β2

nml�nml(r)
] = 0 (9)

satisfying the boundary conditions that �nml as well as its first and second derivatives vanish
at both r = r1 and r = r2. Again, the eigenvalues,

{
β2

nml

}
, are real and the solutions, �nml(r)

and �n′ml(r), associated with two non-degenerate eigenvalues, β2
nml

and β2
n′ml

, satisfy (7). The
general form of these solution is

�nml(r) = Jm(βnmlr) + dY,nmlYm(βnmlr) + dI,nmlIm(klr)

+ dK,nmlKm(klr) + d+,nmlr
m + d−,nmlr

−m, (10)

where the six constants, dY,nml, dI,nml, dK,nml, d+nml, d−,nml and βnml are determined using the
six boundary conditions. The functions, Im and Km, are the modified Bessel functions of the
first and second kind of order m.

2.3. Case II: translationally symmetric case: m �= 0, l = 0

The solution for vt(r) clearly remains the same. However, the derivation of vp(r) needs to be
modified. The equation for vp.nm0(r) becomes simply vp,nm0(r) = −∇2

⊥�nm0(r) exp(imθ)ẑ.
We require that �nm0(r) be the solution of

∇2
⊥�nm0(r) + β2

nm0�nm0(r) = 0, (11)
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where �nm0(r) vanishes at the boundaries, r = r1 and r = r2, guaranteeing that vp.nm0(r)
satisfies the no-slip boundary condition. The solution of (11) is

�nm0(r) = Jm(βnm0r) + dY,nm0Ym(βnm0r), (12)

where the constant dY,nm0 and the (real) eigenvalue β2
nm0 are determined from the vanishing of

φnm0 at the two boundaries. Note that the associated velocity fields satisfy the orthogonality
condition that for n �= n′,

∫ r2

r1
r dr v∗

p,nm0(r) · vp,n′m0(r) = 0.

2.4. Case III: cylindrically symmetric case: m = 0, l �= 0

For this case,

vt,n0l (r) = −dψn0l (r)

dr
exp[iklz]θ̂ .

The no-slip boundary condition demands that dψn0l (r)/dr vanish at both r = r1 and r = r2.
These states will be orthogonal for n �= n′ if∫ r2

r1

r dr
dψ∗

n0l (r)

dr

dψn′0l (r)

dr
= −

∫ r2

r1

r dr ψ∗
n0l (r)

{
1

r

d

dr

[
r

dψn′0l (r)

dr

]}
= 0.

The second integral is obtained by performing an integration by parts and implementing the
no-slip boundary condition on the ψ’s. This orthogonality condition will clearly be satisfied
by requiring that

1

r

d

dr

[
r

dψn0l (r)

dr

]
+ α2

n0lψn0l (r) = 0, (13)

where dψn0l (r)/dr vanishes at both r = r1 and r = r2. The solution of (13) is

ψn0l (r) = J0(αn0lr) + cY,n0lY0(αn0lr), (14)

where the constant cY,n0l and the real eigenvalue α2
n0l are determined from the conditions on

the two boundaries.
For the cylindrically symmetric components of vp, we note that

vp,n0l (r) =
{

iklχnl(r)r̂ − 1

r

d[rχnl(r)]

dr
ẑ
}

exp[iklz],

where we have defined χnl(r) ≡ d�n0l (r)/dr . The no-slip boundary conditions then require
that both χnl and its radial derivative vanish at the two boundaries, r = r1 and r = r2. The
nontrivial part of the orthogonality condition legislates that for n �= n′,∫ r2

r1

r dr v∗
p,n0l (r) · vp,n′0l (r) =

∫ r2

r1

r dr k2
l χ

∗
nl(r)χn′l(r)

+
∫ r2

r1

r dr

{
1

r

d[rχ∗
nl(r)]

dr

} {
1

r

d[rχn′l(r)]

dr

}

=
∫ r2

r1

r drχ∗
nl(r)

(
k2
l χn′l(r) − d

dr

{
1

r

d[rχn′l(r)]

dr

})
= 0,

where we utilized the vanishing of χn at the boundaries to obtain the final integral through an
integration by parts.

If we define a Laplacian differential operator, ℵl , by

ℵlχnl(r) ≡ d

dr

{
1

r

d

dr
[rχnl(r)]

}
− k2

l [rχnl(r)] ,

we note that this orthogonality condition will be satisfied for solutions, {χnl(r)}, of(ℵ2
l + β2

nlℵl

)
χnl(r) = ℵl

(ℵl + β2
nl

)
χnl(r) = 0 (15)
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that satisfy the no-slip boundary condition. This orthogonality results from the Hermitian
property of ℵl and ℵ2

l in this Hilbert space; i.e.,∫ r2

r1

r drχ∗
nl(r)ℵlχn′l(r) =

∫ r2

r1

r drχn′l(r)ℵlχ
∗
nl(r),∫ r2

r1

r drχ∗
nl(r)ℵ2

l χn′l(r) =
∫ r2

r1

r drχn′l(r)ℵ2
l χ

∗
nl(r).

The first condition arises from the vanishing of χnl at the cylindrical boundaries, r1 and r2; the
second follows from the vanishing of both χnl and its radial derivative at the two boundaries.
The solution of (15) is

χnl(r) = J1(γnlr) + dY,nlY1(γnlr) + dI,nlI1(klr) + dK,nlK1(klr); γnl ≡ (
β2

nl − k2
l

) 1
2 .

(16)

The three constants, dY,nl, dI,nl and dK,nl and γnl (which is related to the real eigenvalue, β2
nl

according to (16)), are determined from the four boundary conditions; i.e., the vanishing of
both χnl and its radial derivative at the two boundaries.

2.5. Case IV: axially and cylindrically symmetric case: m = 0 and l = 0

For this case, the solution for vt(r) proceeds exactly as in the case, m = 0, l �= 0:

vt,n00(r) = ∇ × ψn00(r)ẑ

ψn00(r) = J0(αn00r) + cY,n00Y0(αn00r),
(17)

where the constants, cY,n00 and αn00, are determined from the no-slip condition that dψn00(r)/dr

vanishes at the two boundaries, r = r1 and r = r2.
Here the solution for vp(r) proceeds as in the case, m �= 0, l = 0. This yields the result,

vp,n00(r) = ∇ × [∇ × �n00(r)ẑ] , �n00(r) = J0(βnr) + dY,n00Y0(βn00r), (18)

where the constants dY,n00 and βn00 are determined from the vanishing of �n00 at the two
boundaries, which guarantees no-slip.

2.6. Orthogonality of the two classes of fields

We demonstrate here that
∫
D

d3r v∗
t,nml(r) · vp,n′m′l′(r) = 0. For the case m = 0, the proof is

trivial. For m �= 0, we note that ψnml always vanishes at the boundary and is periodic in z.
Hence the required integral can be transformed using a vector identity:∫

D

d3r v∗
t,nml(r) · vp,n′m′l′(r) =

∫
D

d3r ∇ · [ψ∗
nml(r)ẑ] × {∇ × [∇ × �n′m′l′(r)ẑ]}

−
∫

D

d3r ψ∗
nml(r)ẑ · ∇ × ∇2�n′m′l′(r)ẑ,

where we have set

�nml(r) ≡ �nml(r) exp[i(mθ + klz)] and ψnml(r) ≡ ψnml(r) exp[i(mθ + klz)].

The first integral on the right-hand side vanishes because of the boundary condition on ψnml .
The second integral on the right-hand side vanishes trivially.



748 L Turner

3. Spherical geometry

We now derive an orthogonal expansion basis for solenoidal fields that vanish at the boundaries
of the spherical shell, ρ1 � ρ � ρ2. A point will be labelled by its coordinates, (ρ, θ, φ).
The associated unit vectors are ρ̂, θ̂ and φ̂. As with (1), a general solenoidal vector can
be expanded in a basis involving two scalar functions for each set of ‘quantum numbers’,
l and m:

v(r) =
∞∑
l=0

l∑
m=−l

∑
n

ct,nlmvt,nml(r) +
∞∑
l=0

l∑
m=−l

∑
n

cp,nlmvp,nlm(r),

vt,nlm(r) = ∇ × [ψnlm(ρ)Ylm(θ, φ)ρ̂] ,

vp,nlm(r) = ∇ × {∇ × [�nlm(ρ)Ylm(θ, φ)ρ̂]} ,

(19)

where the {Ylm(θ, φ)} are the standard spherical harmonics.
We first determine the set of scalar functions, {ψnlm(ρ)}, such that the associated vectors

are orthogonal; i.e.,
∫
Ds

v∗
t,nlm

(r) · vt,n′l′m′(r) d3r = 0, for n �= n′, l �= l′,m �= m′, and where
the integration domain Ds is the volume of a spherical shell bounded by ρ = ρ1 and ρ = ρ2.

Since vt,nlm(r) = ψnlm(ρ)
[

1
r sin θ

∂Ylm(θ,φ)

∂φ
θ̂ − 1

r

∂Ylm(θ,φ)

∂θ
φ̂
]
, the no-slip boundary condition

that requires vt,nlm to vanish at the boundary implies that ψnlm(ρ) vanishes at ρ = ρ1 and
ρ = ρ2. The orthogonality condition requires that∫

Ds

d3r ∇ × [ψ∗
nlm(ρ)Y ∗

lm(θ, φ)ρ̂] · ∇ × [ψn′l′m′(ρ)Yl′m′(θ, φ)ρ̂]

=
∫

Ds

d3r ∇ · ([ψ∗
nlm(ρ)Y ∗

lm(θ, φ)ρ̂] × {∇ × [ψn′l′m′(ρ)Yl′m′(θ, φ)ρ̂]})

+
∫

Ds

d3r ψ∗
nlm(ρ)Y ∗

lm(θ, φ)ρ̂ · ∇ × {∇ × [ψn′l′m′(ρ)Yl′m′(θ, φ)ρ̂]} = 0,

for n �= n′, l �= l′ and m �= m′. The boundary condition on ψmln eliminates the first integral
on the right-hand side of this equation. Using the definition that the Laplacian operating in
the surface normal to the spherical radius is

∇2
⊥ ≡ 1

ρ2 sin(θ)

∂

∂θ

[
sin(θ)

∂

∂θ

]
+

1

ρ2 sin2(θ)

∂2

∂φ2
, (20)

the last integral can be rewritten compactly to yield the required orthogonality condition:

−
∫

Ds

d3r ψ∗
nlm(ρ)Y ∗

lm(θ, φ)ψn′l′m′(ρ)∇2
⊥Yl′m′(θ, φ)

= l(l + 1)

∫
Ds

d3r
ψ∗

nlm(ρ)Y ∗
lm(θ, φ)ψn′l′m′(ρ)Yl′m′(θ, φ)

ρ2
= 0,

if n �= n′, l �= l′ and m �= m′. The orthogonality of the spherical harmonics guarantees that
latter two conditions will be satisfied. Observe that if we set �nlm(ρ) ≡ �nlm(ρ)

ρ
, the necessary

condition can be re-expressed simply as∫
Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)�n′l′m′(ρ)Yl′m′(θ, φ) = 0 (21)

when n �= n′, l �= l′ and m �= m′.
Noting that the condition on the boundaries implies that the complete Laplacian operator

is Hermitian; i.e., that
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Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)∇2[�n′l′m′(ρ)Yl′m′(θ, φ)]

=
∫

Ds

d3r�n′l′m′(ρ)Yl′m′(θ, φ)∇2[�∗
nlm(ρ)Y ∗

lm(θ, φ)],

we are assured that solutions of the Helmholtz equation(∇2 + α2
nlm

)
�nlm(ρ)Ylm(θ, φ) = 0, (22)

under the condition that �nlm(ρ) vanish at the boundaries, have real eigenvalues α2
nlm whose

associated solutions satisfy (21) when the eigenvalues are distinct. The solutions of (22),
independent of m, are �nlm(ρ) = jl(αnlρ) + cy,nlyl(αnlρ), where jl and yl are the spherical
Bessel functions of the first and second kinds. We thus conclude that

ψnlm(ρ) = ρ[jl(αnlρ) + cy,nlyl(αnlρ)]

are the desired functions yielding orthogonal fields, vt,nlm(r). The constants, αnl and cy,nl, are
determined from the vanishing of ψnlm on the two boundaries, ρ = ρ1 and ρ = ρ2.

We now obtain the solutions for vp,nlm(r). For each l and m value, we must find
a set of scalar functions, {�nlm(r)}, such that the associated vectors are orthogonal; i.e,∫
Ds

v∗
p,nlm

(r) · vp,n′l′m′(r) d3r = 0, for n �= n′, l �= l′ and m �= m′. We note first from (19) that

vp,nlm(r) =
(

−ρ̂∇2
⊥ +

θ̂

ρ

∂2

∂ρ∂θ
+

φ̂

ρ sin(θ)

∂2

∂ρ∂φ

)
[�nlm(ρ)Ylm(θ, φ)] .

Thus the no-slip boundary conditions that legislate the vanishing of vp,nml(r) at the boundaries,
ρ = ρ1 and ρ = ρ2, are that �nlm(ρ) and d�nlm(ρ)/dρ must each vanish at the two boundaries.
The required condition of orthogonality is that for n �= n′, l �= l′ and m �= m′,∫

Ds

d3r∇ × {∇ × [�∗
nlm(ρ)Y ∗

lm(θ, φ)]ρ̂} · ∇ × {∇ × [�n′l′m′(ρ)Yl′m′(θ, φ)ρ̂]}

=
∫

Ds

d3r

{
∇2

⊥[�∗
nlm(ρ)Y ∗

lm(θ, φ)]∇2
⊥[�n′l′m′(ρ)Yl′m′(θ, φ)]

+
1

ρ2

∂2[�∗
nlm(ρ)Y ∗

lm(θ, φ)]

∂ρ∂θ

∂2[�n′l′m′(ρ)Yl′m′(θ, φ)]

∂ρ∂θ

+
1

ρ2 sin2(θ)

∂2[�∗
nlm(ρ)Y ∗

lm(θ, φ)]

∂ρ∂φ

∂2[�n′l′m′(ρ)Yl′m′(θ, φ)]

∂ρ∂φ

}
= 0. (23)

We now do a couple of integrations by parts (or we could equally use well-known vector
identities) to transform each of these integrals.

We consider initially the first of the three integrals. We invoke the vanishing of �nlm

and its radial derivative at the boundaries to obtain the vanishing of the transverse divergence
integrals:∫

Ds

d3r ∇2
⊥[�∗

nlm(ρ)Y ∗
lm(θ, φ)]∇2

⊥ [�n′l′m′(ρ)Yl′m′(θ, φ)]

=
∫

Ds

d3r 	∇⊥ · { 	∇⊥[�∗
nlm(ρ)Y ∗

lm(θ, φ)]∇2
⊥[�n′l′m′(ρ)Yl′m′(θ, φ)]

}

−
∫

Ds

d3r 	∇⊥[�∗
nlm(ρ)Y ∗

lm(θ, φ)] · 	∇⊥
{∇2

⊥[�n′l′m′(ρ)Yl′m′(θ, φ)]
}

= −
∫

Ds

d3r 	∇⊥ · (
[�∗

nlm(ρ)Y ∗
lm(θ, φ)] · 	∇⊥

{∇2
⊥[�n′l′m′(ρ)Yl′m′(θ, φ)]

})
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+
∫

Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)
(∇2

⊥
)2

[�n′l′m′(ρ)Yl′m′(θ, φ)]

=
∫

Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)
(∇2

⊥
)2

[�n′l′m′(ρ)Yl′m′(θ, φ)] .

The second of the integrals on the right-hand side of (23) also may be transformed
by performing two integrations by parts and again using the vanishing of �nlm at the
boundaries:∫ π

0
dθ sin(θ)

∫ 2π

0
dφ

∫ ρ2

ρ1

ρ2dρ

[
1

ρ

d�∗
nlm(ρ)

dρ

∂Y ∗
lm(θ, φ)

∂θ

] [
1

ρ

d�n′l′m′(ρ)

dρ

∂Yl′m′(θ, φ)

∂θ

]

=
∫ π

0
dθ sin(θ)

∫ 2π

0
dφ

∫ ρ2

ρ1

dρ
∂

∂ρ

{[
�∗

nlm(ρ)
∂Y ∗

lm(θ, φ)

∂θ

] [
d�n′l′m′(ρ)

dρ

∂Yl′m′(θ, φ)

∂θ

]}

−
∫ π

0
dθ sin(θ)

∫ 2π

0
dφ

∫ ρ2

ρ1

dρ �∗
nlm(ρ)

∂Y ∗
lm(θ, φ)

∂θ

[
d2�n′l′m′(ρ)

dρ2

∂Yl′m′(θ, φ)

∂θ

]

= −
∫ π

0
dθ

∫ 2π

0
dφ

∫ ρ2

ρ1

dρ
∂

∂θ

{
[�∗

nlm(ρ) sin(θ)Y ∗
lm(θ, φ)]

[
d2�n′l′m′(ρ)

dρ2

∂Yl′m′(θ, φ)

∂θ

]}

+
∫ π

0
dθ

∫ 2π

0
dφ

∫ ρ2

ρ1

dρ �∗
nlm(ρ)Y ∗

lm(θ, φ)
d2�n′l′m′(ρ)

dρ2

∂

∂θ

[
sin(θ)

∂Yl′m′(θ, φ)

∂θ

]

=
∫

Ds

�∗
nlm(ρ)Y ∗

lm(θ, φ)
d2�n′l′m′(ρ)

dρ2

∂

ρ2∂θ

[
sin(θ)

∂Yl′m′(θ, φ)

∂θ

]
.

The third integral on the right-hand side can be similarly transformed:∫
Ds

d3r

{
1

ρ2 sin2(θ)

∂2[�∗
nlm(ρ)Y ∗

lm(θ, φ)]

∂ρ ∂φ

∂2 [�n′l′m′(ρ)Yl′m′(θ, φ)]

∂ρ ∂φ

}

=
∫

Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)
1

ρ2 sin2(θ)

∂4 [�n′l′m′(ρ)Yl′m′(θ, φ)]

∂ρ2∂φ2
.

Thus (23) can be expressed more concisely as∫
Ds

d3r ∇ × {∇ × [�∗
nlm(ρ)Y ∗

lm(θ, φ)ρ̂]} · ∇ × {∇ × [�n′l′m′(ρ)Yl′m′(θ, φ)ρ̂]}

=
∫

Ds

d3r �∗
nlm(ρ)Y ∗

lm(θ, φ)∇2
⊥

(
∇2

⊥ +
∂2

∂ρ2

)
�n′l′m′(ρ)Yl′m′(θ, φ).

We now define

χnlm(ρ) ≡ �nlm(ρ)

ρ
.

Then,

∇2
⊥

(
∇2

⊥ +
∂2

∂ρ2

)
�nlm(ρ)Ylm(θ, φ)

= ρ ∇2
⊥∇2χnlm(ρ)Ylm(θ, φ) = − l(l + 1)

ρ
∇2χnlm(ρ)Ylm(θ, φ),
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where ∇2 is the complete three-dimensional Laplacian in spherical coordinates. As a result,
we note that∫

Ds

d3r∇ × {∇ × [�∗
nlm(ρ)Y ∗

lm(θ, φ)]} · ∇ × {∇ × [�n′l′m′(ρ)Yl′m′(θ, φ)]}

= −l(l + 1)

∫
Ds

d3r χ∗
nlm(ρ)Y ∗

lm(θ, φ)∇2[χn′l′m′(ρ)Yl′m′(θ, φ)].

Since we wish this integral to vanish when n �= n′, l �= l′ and m �= m′, and since it already
vanishes if either of the last two conditions is met, we can set the condition for the χ ’s
(for l > 0) that∫ ρ2

ρ1

ρ2 dρ χ∗
nlm(ρ)

[
1

ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
− l(l + 1)

ρ2

]
χn′lm(ρ)

must vanish for n �= n′.
We now define the operator

∇̃2 ≡ 1

ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
− l(l + 1)

ρ2

and note that the boundary conditions imply that the χ ‘s and their radial derivatives vanish at
ρ = ρ1 and ρ = ρ2. The Hermiticity of ∇̃2 and (∇̃2)2 follows immediately:∫ ρ2

ρ1

ρ2 dρ χ∗
nlm(ρ)∇̃2χn′lm(ρ) =

∫ ρ2

ρ1

ρ2 dρ χn′lm(ρ)∇̃2χ∗
nlm(ρ),

∫ ρ2

ρ1

ρ2 dρ χ∗
nlm(ρ)(∇̃2)2χn′lm(ρ) =

∫ ρ2

ρ1

ρ2 dρ χn′lm(ρ)(∇̃2)2χ∗
nlm(ρ).

As we have seen, such Hermitian conditions guarantee that the solutions of

∇̃2
(∇̃2 + β2

l

)
χnlm(ρ) = 0

satisfy the desired orthogonality condition. Since �nlm(ρ) = ρ χnlm(ρ), we obtain finally that
�nlm(ρ) = ρ[jl(βlρ) + dy,lyl(βlρ)] + d+,lρ

l+1 + d−,lρ
−l , where the four constants, dy,l, d+,l, d-,l

and βl are determined by imposing the four boundary conditions that the �’s and their radial
derivatives must vanish at both ρ = ρ1 and ρ = ρ2.

One readily can verify that again the two classes of fields are themselves orthogonal; i.e.,∫
Ds

d3r v∗
t,nlm(r) · vp,n′l′m′(r) = 0. We convert this integral as follows:

∫
Ds

d3r v∗
t,nlm(r) · vp,n′l′m′(r)

=
∫

Ds

d3r ∇ · [ψ∗
nlm(r)ρ̂] × {∇ × [∇ × �n′m′l′(r)ρ̂]}

−
∫

Ds

d3r ψ∗
nlm(r)ρ̂ · ∇ × ∇2[�n′l′m′(r)ρ̂],

where we have set �nlm(r) ≡ �nlm(ρ)Ylm(θ, φ) and ψnlm(r) ≡ ψnlm(ρ)Ylm(θ, φ). The first
integral on the right-hand side vanishes because of the vanishing of ψnlm at the boundary. The
second integral on the right-hand side vanishes trivially.
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Figure 1. An example of a solenoidal velocity field satisfying no-slip boundary conditions within
a cylinder of radius 1/2. The axial wavenumber, k, is 2/3; the azimuthal mode number, m, is 3.
The radial profiles are presented at θ = z = 0. The eigenvalue chosen is β = 334.43. Parts (a),
(b) and (c), depict respectively the radial structures of vp,r , vp,θ and vp,z.

4. Graphical results

We now present some interesting graphical results for vp. For the case of the cylinder having
a radius of 1/2, figure 1 presents an example of the radial structure for the three components
of this vector for the case: k = 2/3, m = 3 at θ = z = 0. The number of nodes is governed by
the eigenvalue. Here we have chosen the eigenvalue, β = 334.43. The radial, azimuthal and
axial components are depicted in figures 1(a)–(c), respectively. Note the curious structure of
vp,θ in figure 1(b).

For the case of a sphere of unit radius, we present in figures 2(a)–(c) the three components
of vp for the case: l = 3, m = 2; namely, vp,ρ, vp,θ , vp,φ , respectively. The radial structure of
vp is shown at θ = 1, φ = 0. The number of nodes is again governed by the eigenvalue. Here
we have chosen the eigenvalue, β = 31.094.

The ratio of the relative magnitudes of the components of each of these vectors at these
high radial wavenumbers is also noteworthy and cries out for physical interpretation. Since
these vectors are unnormalized, the actual magnitudes have no significance.
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Figure 2. An example of a solenoidal velocity field satisfying no-slip boundary conditions within
a sphere of unit radius. The values of l and m for this case are 3 and 2, respectively. The radial
profiles are presented at θ = 1, φ = 0. The eigenvalue chosen is β = 31.094. Parts (a), (b) and
(c) depict respectively the radial structures of vp,ρ , vp,θ and vp,φ .

5. Conclusion

We have shown how to derive sets of three-dimensional orthogonal, solenoidal basis vectors
that vanish on specified boundaries and have obtained these sets for both a periodic cylindrical
boundary (including a cylindrical periodic annulus) and for a spherical boundary (including
a spherical shell). We believe that these sets of basis vectors provide a complete set for the
expansion of an arbitrary solenoidal vector all of whose components vanish on the boundary.
Our belief stems from the fact that they arise from solutions of differential equations that are
self-adjoint; i.e., Hermitian, by construction. This method can be applied also to obtain the
analogous basis for a slab geometry in which the vectors vanish on two infinite parallel planes.

We should emphasize that our construction is not necessarily unique. Merely as an
example, note that in the second of the two equations of (8), the operator ∇2

(∇2
⊥
)2

could be

replaced by
(∇2

⊥
)3

. This yields a different differential equation that also provides orthogonal
solutions, which however are not quite as elegant as those of (10).

The convergence properties of this basis need exploration. However, we have already
made successful comparisons of numerical results for Couette flow obtained using this
solenoidal no-slip representation with those previously obtained using the Chandrasekhar–
Reid functions (Chandrasekhar 1961).

Acknowledgments

We wish to thank Richard Lovelace for his encouragement of this research. We are grateful
to David Montgomery for urging the expeditious preparation of this manuscript. I have



754 L Turner

also enjoyed discussions with him concerning the imposition of viscous boundary conditions
on solutions of the Navier–Stokes equation. Ari Turner and Richard Lovelace suggested
improvements that I incorporated into the manuscript. Finally, we wish to thank Rena T Fleur
for her selfless dedication in painstakingly typing this manuscript. This work was supported
in part by NSF grant AST-0507760.

References

Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon)
Chandrasekhar S and Kendall P C 1957 On force-free magnetic fields Astrophys. J. 126 457–60
Chandrasekhar S and Reid W H 1957 On the expansion of functions which satisfy four boundary conditions Proc.

Natl Acad. Sci. 43 521–7
Constantin P and Foias C 1988 Navier–Stokes Equations (Chicago: University of Chicago Press)
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